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Preamble 

About Crypto Asset Service Provider (CASP) 

Name of the CASP: Deutsche WertpapierService Bank AG 
Street and number: Wildunger Straße 14
City: Frankfurt am Main
Country: Germany
LEI: 529900EXG2PM316ISO63 

About this report 

This disclosure serves as evidence of compliance with the regulatory requirements of MiCAR 66 (5).
This  requirement  obliges  crypto  asset  service  providers  to  disclose  significant  adverse  factors
affecting  the  climate  and  the  environment.  In  particular,  this  disclosure  complies  with  the
requirements  of  “Commission  Regulation  (EU)  2025/422 of  December  17,  2024,  supplementing
Regulation (EU) 2023/1114 of the European Parliament and of the Council with regard to regulatory
technical  standards specifying the content,  methods and presentation of information relating to
sustainability indicators related to climate-related and other environmental impacts". The optional
information specified in Article 6, par. 8 (a) to (d) DR 2025/422 is not included.

This  report  is  valid  until  material  changes  occur  in  the  data,  which  will  result  in  an  immediate
adjustment of this report.

Overview 

This is an overview of the core indicator energy consumption but does not represent the reporting
according to MiCAR 66 (5). Please find the full disclosure below. 

# Crypto-Asset Name Crypto-Asset FFG Energy consumption (kWh per calendar year)

1 Bitcoin V15WLZJMF 203,128,665,629.13

2 Ethereum Eth D5RG2FHH0 2,390,166.00

3 Polygon POL GB8DQ8DWN 89,636.32

4 ChainLink Token 3R3J70FDR 8,019.54

5 Uniswap XMB84LZBZ 6,734.93

6 Aave Token H618RN577 4,499.41

Sustainability indicators 

Bitcoin

Quantitative information 

Field Value Unit

S.1 Name Deutsche WertpapierService Bank
AG /

S.2 Relevant legal entity identifier 529900EXG2PM316ISO63 /
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Field Value Unit

S.3 Name of the crypto-asset Bitcoin /

S.6 Beginning of the period to which the disclosure
relates 2024-05-28 /

S.7  End  of  the  period  to  which  the  disclosure
relates 2025-05-28 /

S.8 Energy consumption 203128665629.12796 kWh/a

S.10 Renewable energy consumption 24.1347029759 %

S.11 Energy intensity 14.96977 kWh

S.12 Scope 1 DLT GHG emission - Controlled 0.00000 tCO2e

S.13 Scope 2 DLT GHG emission - Purchased 83688210.18260 tCO2e

S.14 GHG intensity 6.16749 kgCO2e

Qualitative information 

S.4 Consensus Mechanism 

Bitcoin is present on the following networks: Bitcoin, Lightning Network.

The Bitcoin blockchain network uses a consensus mechanism called Proof of Work (PoW) to achieve
distributed consensus among its nodes. Here's a detailed breakdown of how it works: 

Core Concepts:

1. Nodes and Miners: 
- Nodes: Nodes are computers running the Bitcoin software that participate in the network by

validating transactions and blocks. 
-  Miners:  Special  nodes,  called  miners,  perform  the  work  of  creating  new  blocks  by  solving

complex cryptographic puzzles. 
2. Blockchain: The blockchain is a public ledger that records all Bitcoin transactions in a series of

blocks.  Each block contains a  list  of  transactions,  a  reference to the previous block (hash),  a
timestamp, and a nonce (a random number used once). 

3.  Hash Functions:  Bitcoin uses the SHA-256 cryptographic hash function to secure the data in
blocks. A hash function takes input data and produces a fixed-size string of characters, which
appears random. 

Consensus Process:

1. Transaction Validation: Transactions are broadcast to the network and collected by miners into a
block. Each transaction must be validated by nodes to ensure it follows the network's rules, such
as correct signatures and sufficient funds. 

2. Mining and Block Creation: 
- Nonce and Hash Puzzle: Miners compete to find a nonce that, when combined with the block's

data and passed through the SHA-256 hash function, produces a hash that is less than a target
value. This target value is adjusted periodically to ensure that blocks are mined approximately
every 10 minutes. 

-  Proof  of  Work:  The process  of  finding this  nonce is  computationally  intensive  and requires
significant energy and resources. Once a miner finds a valid nonce, they broadcast the newly
mined block to the network. 

Sustainability indicators according to MiCAR 66 (5) 4



3. Block Validation and Addition: Other nodes in the network verify the new block to ensure the
hash is correct and that all transactions within the block are valid. If the block is valid, nodes add it
to their copy of the blockchain and the process starts again with the next block. 

4.  Chain Consensus:  The longest  chain (the chain with the most accumulated proof  of  work)  is
considered the valid chain by the network. Nodes always work to extend the longest valid chain.
In  the  case  of  multiple  valid  chains  (forks),  the  network  will  eventually  resolve  the  fork  by
continuing to mine and extending one chain until it becomes longer.

For the calculation of  the corresponding indicators,  the additional  energy consumption and the
transactions  of  the  Lightning  Network  have  also  been  taken  into  account,  as  this  reflects  the
categorization  of  the  Digital  Token Identifier  Foundation  for  the  respective  functionally  fungible
group (“FFG”) relevant for this reporting. If  one would exclude these transactions, the respective
estimations regarding the “per transaction” count would be substantially higher.

S.5 Incentive Mechanisms and Applicable Fees 

Bitcoin is present on the following networks: Bitcoin, Lightning Network.

The  Bitcoin  blockchain  relies  on  a  Proof-of-Work  (PoW)  consensus  mechanism  to  ensure  the
security and integrity of transactions. This mechanism involves economic incentives for miners and
a fee structure that supports network sustainability: 

Incentive Mechanisms:

1. Block Rewards: 
- Newly Minted Bitcoins: Miners are incentivized by block rewards, which consist of newly created

bitcoins awarded to the miner who successfully mines a new block. Initially, the block reward
was 50 BTC, but it halves every 210,000 blocks (approx. every four years) in an event known as
the "halving." 

- Halving and Scarcity: The halving mechanism ensures that the total supply of Bitcoin is capped at
21 million, creating scarcity and potentially increasing value over time. 

2. Transaction Fees: 
- User Fees: Each transaction includes a fee paid by the user to incentivize miners to include their

transaction in a block. These fees are crucial, especially as the block reward diminishes over
time due to halving. 

- Fee Market: Transaction fees are determined by the market, where users compete to have their
transactions  processed  quickly.  Higher  fees  typically  result  in  faster  inclusion  in  a  block,
especially during periods of high network congestion. 

For the calculation of  the corresponding indicators,  the additional  energy consumption and the
transactions  of  the  Lightning  Network  have  also  been  taken  into  account,  as  this  reflects  the
categorization  of  the  Digital  Token Identifier  Foundation  for  the  respective  functionally  fungible
group (“FFG”) relevant for this reporting. If  one would exclude these transactions, the respective
estimations regarding the “per transaction” count would be substantially higher

S.9 Energy consumption sources and methodologies 

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called "top-down" approach is being used, within
which an economic calculation of the miners is assumed. Miners are persons or devices that actively
participate in the proof-of-work consensus mechanism. The miners are considered to be the central
factor  for  the  energy  consumption  of  the  network.  Hardware  is  pre-selected  based  on  the
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consensus mechanism's hash algorithm: SHA-256. A current profitability threshold is determined on
the  basis  of  the  revenue  and  cost  structure  for  mining  operations.  Only  Hardware  above  the
profitability threshold is considered for the network. The energy consumption of the network can be
determined  by  taking  into  account  the  distribution  for  the  hardware,  the  efficiency  levels  for
operating the hardware and on-chain information regarding the miners' revenue opportunities. If
significant use of merge mining is known, this is taken into account. When calculating the energy
consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG
DTI)  to  determine  all  implementations  of  the  asset  of  question  in  scope  and  we  update  the
mappings  regulary,  based  on  data  of  the  Digital  Token  Identifier  Foundation.  The  information
regarding  the  hardware  used  and  the  number  of  participants  in  the  network  is  based  on
assumptions  that  are  verified with  best  effort  using  empirical  data.  In  general,  participants  are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To  determine  the  energy  consumption  of  a  token,  the  energy  consumption  of  the  network(s)
lightning_network is  calculated first.  For the energy consumption of  the token,  a fraction of  the
energy consumption of the network is attributed to the token, which is determined based on the
activity  of  the  crypto-asset  within  the  network.  When  calculating  the  energy  consumption,  the
Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all
implementations of the asset in scope. The mappings are updated regularly, based on data of the
Digital Token Identifier Foundation. The information regarding the hardware used and the number
of  participants  in  the network is  based on assumptions that  are  verified with  best  effort  using
empirical  data.  In  general,  participants  are  assumed  to  be  largely  economically  rational.  As  a
precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making
higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies 

To determine the proportion of  renewable energy usage,  the locations of  the nodes are to be
determined using public information sites, open-source crawlers and crawlers developed in-house.
If no information is available on the geographic distribution of the nodes, reference networks are
used which are comparable in terms of their incentivization structure and consensus mechanism.
This geo-information is merged with public information from Our World in Data, see citation. The
intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) – with major processing by
Our World in Data. “Share of electricity generated by renewables – Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical  Review  of  World  Energy”  [original  data].  Retrieved  from  https://ourworldindata.org/
grapher/share-electricity-renewables

S.16 Key GHG sources and methodologies 

To determine the GHG Emissions, the locations of the nodes are to be determined using public
information  sites,  open-source  crawlers  and  crawlers  developed  in-house.  If  no  information  is
available  on  the  geographic  distribution  of  the  nodes,  reference  networks  are  used  which  are
comparable  in  terms  of  their  incentivization  structure  and  consensus  mechanism.  This  geo-
information is merged with public information from Our World in Data, see citation. The intensity is
calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) – with major processing by
Our  World  in  Data.  “Carbon  intensity  of  electricity  generation  –  Ember  and  Energy  Institute”
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[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical  Review  of  World  Energy”  [original  data].  Retrieved  from  https://ourworldindata.org/
grapher/carbon-intensity-electricity Licenced under CC BY 4.0

Ethereum Eth

Quantitative information 

Field Value Unit

S.1 Name Deutsche WertpapierService Bank
AG /

S.2 Relevant legal entity identifier 529900EXG2PM316ISO63 /

S.3 Name of the crypto-asset Ethereum Eth /

S.6 Beginning of the period to which the disclosure
relates 2024-05-28 /

S.7  End  of  the  period  to  which  the  disclosure
relates 2025-05-28 /

S.8 Energy consumption 2390166.00000 kWh/a

S.10 Renewable energy consumption 26.5386870830 %

S.11 Energy intensity 0.00009 kWh

S.12 Scope 1 DLT GHG emission - Controlled 0.00000 tCO2e

S.13 Scope 2 DLT GHG emission - Purchased 795.47849 tCO2e

S.14 GHG intensity 0.00003 kgCO2e

Qualitative information 

S.4 Consensus Mechanism 

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity. 

The  network  operates  on  a  slot  and  epoch  system,  where  a  new block  is  proposed  every  12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees 

The  crypto-asset's  PoS  system secures  transactions  through  validator  incentives  and  economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees. 
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Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity. 

This  system aims to increase security  by aligning incentives while  making the crypto-asset's  fee
structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies 

For the calculation of energy consumptions, the so called "bottom-up" approach is being used. The
nodes are considered to be the central factor for the energy consumption of the network. These
assumptions are made on the basis of empirical  findings through the use of public information
sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating
the hardware used within the network are the requirements for operating the client software. The
energy consumption of the hardware devices was measured in certified test laboratories. When
calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital
Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we
update  the  mappings  regulary,  based  on  data  of  the  Digital  Token  Identifier  Foundation.  The
information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies 

To determine the proportion of  renewable energy usage,  the locations of  the nodes are to be
determined using public information sites, open-source crawlers and crawlers developed in-house.
If no information is available on the geographic distribution of the nodes, reference networks are
used which are comparable in terms of their incentivization structure and consensus mechanism.
This geo-information is merged with public information from Our World in Data, see citation. The
intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) – with major processing by
Our World in Data. “Share of electricity generated by renewables – Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical  Review  of  World  Energy”  [original  data].  Retrieved  from  https://ourworldindata.org/
grapher/share-electricity-renewables

S.16 Key GHG sources and methodologies 

To determine the GHG Emissions, the locations of the nodes are to be determined using public
information  sites,  open-source  crawlers  and  crawlers  developed  in-house.  If  no  information  is
available  on  the  geographic  distribution  of  the  nodes,  reference  networks  are  used  which  are
comparable  in  terms  of  their  incentivization  structure  and  consensus  mechanism.  This  geo-
information is merged with public information from Our World in Data, see citation. The intensity is
calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) – with major processing by
Our  World  in  Data.  “Carbon  intensity  of  electricity  generation  –  Ember  and  Energy  Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical  Review  of  World  Energy”  [original  data].  Retrieved  from  https://ourworldindata.org/
grapher/carbon-intensity-electricity Licenced under CC BY 4.0
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Polygon POL

Quantitative information 

Field Value Unit

S.1 Name Deutsche WertpapierService Bank
AG /

S.2 Relevant legal entity identifier 529900EXG2PM316ISO63 /

S.3 Name of the crypto-asset Polygon POL /

S.6 Beginning of the period to which the disclosure
relates 2024-05-28 /

S.7 End of the period to which the disclosure relates 2025-05-28 /

S.8 Energy consumption 89636.32266 kWh/
a

Qualitative information 

S.4 Consensus Mechanism 

Polygon POL is present on the following networks: Ethereum, Polygon.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity. 

The  network  operates  on  a  slot  and  epoch  system,  where  a  new block  is  proposed  every  12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a
hybrid consensus mechanism. Here’s a detailed explanation of how Polygon achieves consensus: 

Core Concepts:

1. Proof of Stake (PoS): 
- Validator Selection: Validators on the Polygon network are selected based on the number of

MATIC  tokens  they  have  staked.  The  more  tokens  staked,  the  higher  the  chance  of  being
selected to validate transactions and produce new blocks. 

- Delegation: Token holders who do not wish to run a validator node can delegate their MATIC
tokens to validators. Delegators share in the rewards earned by validators. 

2. Plasma Chains: 
- Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the

main Ethereum chain. These child chains can process transactions off-chain and submit only
the final state to the Ethereum main chain, significantly increasing throughput and reducing
congestion. 
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-  Fraud  Proofs:  Plasma  uses  a  fraud-proof  mechanism  to  ensure  the  security  of  off-chain
transactions. If a fraudulent transaction is detected, it can be challenged and reverted. 

Consensus Process:

1. Transaction Validation: 
Transactions are first validated by validators who have staked MATIC tokens.  These validators

confirm the validity of transactions and include them in blocks. 
2. Block Production: 

-  Proposing  and  Voting:  Validators  propose  new  blocks  based  on  their  staked  tokens  and
participate  in  a  voting  process  to  reach  consensus  on  the  next  block.  The  block  with  the
majority of votes is added to the blockchain. 

- Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain
are submitted to the Ethereum main chain. This process ensures the security and finality of
transactions on the Polygon network. 

3. Plasma Framework: 
-  Child  Chains:  Transactions  can  be  processed  on  child  chains  created  using  the  Plasma

framework. These transactions are validated off-chain and only the final state is submitted to
the Ethereum main chain. 

- Fraud Proofs: If  a fraudulent transaction occurs, it can be challenged within a certain period
using fraud proofs. This mechanism ensures the integrity of off-chain transactions. 

Security and Economic Incentives: 

1. Incentives for Validators: 
-  Staking Rewards:  Validators  earn rewards for  staking MATIC tokens and participating in  the

consensus process. These rewards are distributed in MATIC tokens and are proportional to the
amount staked and the performance of the validator. 

-  Transaction Fees:  Validators also earn a portion of  the transaction fees paid by users.  This
provides an additional financial incentive to maintain the network’s integrity and efficiency. 

2. Delegation: 
Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate

to. This encourages more token holders to participate in securing the network by choosing
reliable validators. 

3. Economic Security: 
Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This

penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that
validators act in the best interest of the network.

S.5 Incentive Mechanisms and Applicable Fees 

Polygon POL is present on the following networks: Ethereum, Polygon.

The  crypto-asset's  PoS  system secures  transactions  through  validator  incentives  and  economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees. 

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity. 
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This  system aims to increase security  by aligning incentives while  making the crypto-asset's  fee
structure more predictable and deflationary during high network activity.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network
security, incentivize participation, and maintain transaction integrity. 

Incentive Mechanisms: 

1. Validators: 
- Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are

selected to validate transactions and produce new blocks based on the number of tokens they
have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction
fees for their services. 

-  Block  Production:  Validators  are  responsible  for  proposing  and  voting  on  new  blocks.  The
selected validator proposes a block, and other validators verify and validate it. Validators are
incentivized to act honestly and efficiently to earn rewards and avoid penalties. 

- Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring
the security and finality of transactions processed on Polygon. This provides an additional layer
of security by leveraging Ethereum's robustness. 

2. Delegators: 
- Delegation: Token holders who do not wish to run a validator node can delegate their MATIC

tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators,
incentivizing them to choose reliable and performant validators. 

-  Shared  Rewards:  Rewards  earned  by  validators  are  shared  with  delegators,  based  on  the
proportion  of  tokens  delegated.  This  system  encourages  widespread  participation  and
enhances the network's decentralization. 

3. Economic Security: 
-  Slashing:  Validators  can  be  penalized  through  a  process  called  slashing  if  they  engage  in

malicious behavior  or  fail  to  perform their  duties  correctly.  This  includes double-signing or
going offline for extended periods. Slashing results in the loss of a portion of the staked tokens,
acting as a strong deterrent against dishonest actions. 

- Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to
participate  in  the  consensus  process,  ensuring  they  have  a  vested  interest  in  maintaining
network security and integrity. Fees on the Polygon Blockchain 

4. Transaction Fees: 
-  Low  Fees:  One  of  Polygon's  main  advantages  is  its  low  transaction  fees  compared  to  the

Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to
encourage high transaction throughput and user adoption. 

-  Dynamic Fees:  Fees on Polygon can vary depending on network congestion and transaction
complexity. However, they remain significantly lower than those on Ethereum, making Polygon
an attractive option for users and developers. 

5. Smart Contract Fees: 
Deployment and Execution Costs:  Deploying and interacting with smart  contracts  on Polygon

incurs fees based on the computational resources required. These fees are also paid in MATIC
tokens and are much lower than on Ethereum, making it cost-effective for developers to build
and maintain decentralized applications (dApps) on Polygon. 

6. Plasma Framework: 
State  Transfers  and  Withdrawals:  The  Plasma  framework  allows  for  off-chain  processing  of

transactions, which are periodically batched and committed to the Ethereum main chain. Fees
associated with  these processes  are  also  paid  in  MATIC  tokens,  and they  help  reduce the
overall cost of using the network.
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S.9 Energy consumption sources and methodologies 

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called "bottom-up" approach is being used. The
nodes are considered to be the central factor for the energy consumption of the network. These
assumptions are made on the basis of empirical  findings through the use of public information
sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating
the hardware used within the network are the requirements for operating the client software. The
energy consumption of the hardware devices was measured in certified test laboratories. Due to
the structure of this network, it is not only the mainnet that is responsible for energy consumption.
In  order  to  calculate  the structure  adequately,  a  proportion of  the energy  consumption of  the
connected network, ethereum, must also be taken into account, because the connected network is
also responsible for security. This proportion is determined on the basis of gas consumption. When
calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital
Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we
update  the  mappings  regulary,  based  on  data  of  the  Digital  Token  Identifier  Foundation.  The
information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To  determine  the  energy  consumption  of  a  token,  the  energy  consumption  of  the  network(s)
ethereum is calculated first.  For the energy consumption of  the token,  a fraction of  the energy
consumption of the network is attributed to the token, which is determined based on the activity of
the crypto-asset within the network.  When calculating the energy consumption,  the Functionally
Fungible  Group  Digital  Token  Identifier  (FFG  DTI)  is  used  -  if  available  -  to  determine  all
implementations of the asset in scope. The mappings are updated regularly, based on data of the
Digital Token Identifier Foundation. The information regarding the hardware used and the number
of  participants  in  the network is  based on assumptions that  are  verified with  best  effort  using
empirical  data.  In  general,  participants  are  assumed  to  be  largely  economically  rational.  As  a
precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making
higher estimates for the adverse impacts.

ChainLink Token

Quantitative information 

Field Value Unit

S.1 Name Deutsche WertpapierService Bank
AG /

S.2 Relevant legal entity identifier 529900EXG2PM316ISO63 /

S.3 Name of the crypto-asset ChainLink Token /

S.6 Beginning of the period to which the disclosure
relates 2024-05-28 /

S.7 End of the period to which the disclosure relates 2025-05-28 /

S.8 Energy consumption 8019.53824 kWh/
a
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Qualitative information 

S.4 Consensus Mechanism 

ChainLink Token is present on the following networks: Arbitrum, Avalanche, Binance Smart Chain,
Ethereum, Fantom, Gnosis Chain, Optimism, Polygon, Solana.

Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability
and reduce transaction costs. It  assumes that transactions are valid by default and only verifies
them if there's a challenge (optimistic).

Core Components: 

- Sequencer: Orders transactions and creates batches for processing. 
- Bridge: Facilitates asset transfers between Arbitrum and Ethereum. 
- Fraud Proofs: Protect against invalid transactions through an interactive verification process. 

Verification Process: 

1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and
batches them. 

2. State Commitment: These batches are submitted to Ethereum with a state commitment. 
3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud. 
4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to

identify the fraudulent transaction. The final operation is executed on Ethereum to determine the
correct state. 

5.  Rollback and Penalties:  If  fraud is proven, the state is rolled back, and the dishonest party is
penalized. 

Security  and Efficiency:  The combination of  the Sequencer,  bridge,  and interactive fraud proofs
ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging
off-chain computations, Arbitrum can provide high throughput and low fees.

The Avalanche blockchain network employs a unique Proof-of-Stake consensus mechanism called
Avalanche  Consensus,  which  involves  three  interconnected  protocols:  Snowball,  Snowflake,  and
Avalanche. 

Avalanche Consensus Process:

1. Snowball Protocol: 
-  Random Sampling:  Each validator randomly samples a small,  constant-sized subset of  other

validators. 
- Repeated Polling: Validators repeatedly poll the sampled validators to determine the preferred

transaction. 
-  Confidence  Counters:  Validators  maintain  confidence  counters  for  each  transaction,

incrementing them each time a sampled validator supports their preferred transaction. 
-  Decision  Threshold:  Once  the  confidence  counter  exceeds  a  pre-defined  threshold,  the

transaction is considered accepted. 
2. Snowflake Protocol: 

-  Binary Decision: Enhances the Snowball protocol by incorporating a binary decision process.
Validators decide between two conflicting transactions. 

- Binary Confidence: Confidence counters are used to track the preferred binary decision. 
- Finality: When a binary decision reaches a certain confidence level, it becomes final. 

Sustainability indicators according to MiCAR 66 (5) 13



3. Avalanche Protocol: 
- DAG Structure: Uses a Directed Acyclic Graph (DAG) structure to organize transactions, allowing

for parallel processing and higher throughput. 
-  Transaction  Ordering:  Transactions  are  added  to  the  DAG  based  on  their  dependencies,

ensuring a consistent order. 
- Consensus on DAG: While most Proof-of-Stake Protocols use a Byzantine Fault Tolerant (BFT)

consensus,  Avalanche  uses  the  Avalanche  Consensus,  Validators  reach  consensus  on  the
structure and contents of the DAG through repeated Snowball and Snowflake.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority
(PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA).
This method ensures fast block times and low fees while maintaining a level of decentralization and
security. 

Core Components:

1. Validators (so-called “Cabinet Members”): Validators on BSC are responsible for producing new
blocks, validating transactions, and maintaining the network’s security. To become a validator, an
entity must stake a significant amount of BNB (Binance Coin).  Validators are selected through
staking and voting by token holders. There are 21 active validators at any given time, rotating to
ensure decentralization and security. 

2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens
to validators. This delegation helps validators increase their stake and improves their chances of
being selected to produce blocks. Delegators earn a share of the rewards that validators receive,
incentivizing broad participation in network security. 

3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the
pool waiting to become validators. They are essentially potential validators who are not currently
active but can be elected to the validator set through community voting. Candidates play a crucial
role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus
maintaining network resilience and decentralization. Consensus Process 

4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received
from delegators.  The  more  BNB staked  and  votes  received,  the  higher  the  chance  of  being
selected to validate transactions and produce new blocks. The selection process involves both the
current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes. 

5.  Block  Production:  The selected validators  take  turns  producing  blocks  in  a  PoA-like  manner,
ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add
them to new blocks, and broadcast these blocks to the network. 

6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction
finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly
reach consensus. Security and Economic Incentives 

7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to
ensure their honest behavior. This staked amount can be slashed if  validators act maliciously.
Staking incentivizes validators to act in the network's best interest to avoid losing their staked
BNB. 

8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This
incentivizes them to choose reliable validators and participate in the network’s security. Validators
and  delegators  share  transaction  fees  as  rewards,  which  provides  continuous  economic
incentives to maintain network security and performance. 

9.  Transaction Fees:  BSC employs low transaction fees,  paid in BNB, making it  cost-effective for
users. These fees are collected by validators as part of their rewards, further incentivizing them to
validate transactions accurately and efficiently.

Sustainability indicators according to MiCAR 66 (5) 14



The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity. 

The  network  operates  on  a  slot  and  epoch  system,  where  a  new block  is  proposed  every  12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Fantom  operates  on  the  Lachesis  Protocol,  an  Asynchronous  Byzantine  Fault  Tolerant  (aBFT)
consensus mechanism designed for fast, secure, and scalable transactions. 

Core Components of Fantom’s Consensus: 

1. Lachesis Protocol (aBFT): 
- Asynchronous and Leaderless: Lachesis allows nodes to reach consensus independently without

relying on a central leader, enhancing decentralization and speed. 
-  DAG Structure:  Instead of a linear blockchain,  Lachesis uses a Directed Acyclic Graph (DAG)

structure,  allowing  multiple  transactions  to  be  processed  in  parallel  across  nodes.  This
structure  supports  high throughput,  making the network  suitable  for  applications  requiring
rapid transaction processing. 

2. Event Blocks and Instant Finality: 
- Event Blocks: Transactions are grouped into event blocks, which are validated asynchronously by

multiple validators.  When enough validators confirm an event block,  it  becomes part of the
Fantom network’s history. 

- Instant Finality: Transactions on Fantom achieve immediate finality, meaning they are confirmed
and cannot be reversed. This property is ideal for applications requiring fast and irreversible
transactions.

Gnosis  Chain  –  Consensus Mechanism Gnosis  Chain  employs  a  dual-layer  structure to  balance
scalability and security, using Proof of Stake (PoS) for its core consensus and transaction finality.

Core Components: 

- Two-Layer Structure Layer 1: Gnosis Beacon Chain The Gnosis Beacon Chain operates on a Proof
of Stake (PoS) mechanism, acting as the security and consensus backbone. Validators stake GNO
tokens on the Beacon Chain and validate transactions, ensuring network security and finality. 

- Layer 2: Gnosis xDai Chain processes transactions and dApp interactions, providing high-speed,
low-cost transactions. Layer 2 transaction data is finalized on the Gnosis Beacon Chain, creating
an  integrated  framework  where  Layer  1  ensures  security  and  finality,  and  Layer  2  enhances
scalability. Validator Role and Staking Validators on the Gnosis Beacon Chain stake GNO tokens
and participate in consensus by validating blocks.  This  setup ensures that  validators have an
economic interest in maintaining the security and integrity of both the Beacon Chain (Layer 1) and
the xDai Chain (Layer 2). Cross-Layer Security Transactions on Layer 2 are ultimately finalized on
Layer 1, providing security and finality to all activities on the Gnosis Chain. This architecture allows
Gnosis Chain to combine the speed and cost efficiency of Layer 2 with the security guarantees of
a PoS-secured Layer 1, making it suitable for both high-frequency applications and secure asset
management.

Optimism  is  a  Layer  2  scaling  solution  for  Ethereum  that  uses  Optimistic  Rollups  to  increase
transaction throughput and reduce costs while inheriting the security of the Ethereum main chain. 
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Core Components: 

1. Optimistic Rollups: 
- Rollup Blocks: Transactions are batched into rollup blocks and processed off-chain. 
- State Commitments: The state of these transactions is periodically committed to the Ethereum

main chain. 
2. Sequencers: 

-  Transaction  Ordering:  Sequencers  are  responsible  for  ordering  transactions  and  creating
batches. 

-  State Updates:  Sequencers update the state of the rollup and submit these updates to the
Ethereum main chain. 

-  Block  Production:  They  construct  and  execute  Layer  2  blocks,  which  are  then  posted  to
Ethereum. 

3. Fraud Proofs: 
- Assumption of Validity: Transactions are assumed to be valid by default. 
- Challenge Period: A specific time window during which anyone can challenge a transaction by

submitting a fraud proof. 
- Dispute Resolution: If a transaction is challenged, an interactive verification game is played to

determine its validity. If  fraud is detected, the invalid state is rolled back, and the dishonest
participant is penalized. 

Consensus Process:

1. Transaction Submission: Users submit transactions to the sequencer, which orders them into
batches. 

2. Batch Processing: The sequencer processes these transactions off-chain, updating the Layer 2
state. 

3. State Commitment: The updated state and the batch of transactions are periodically committed
to  the  Ethereum  main  chain.  This  is  done  by  posting  the  state  root  (a  cryptographic  hash
representing the state) and transaction data as calldata on Ethereum. 

4. Fraud Proofs and Challenges: Once a batch is posted, there is a challenge period during which
anyone can submit a fraud proof if they believe a transaction is invalid. 
- Interactive Verification: The dispute is resolved through an interactive verification game, which

involves breaking down the transaction into smaller steps to identify the exact point of fraud. 
- Rollbacks and Penalties: If fraud is proven, the batch is rolled back, and the dishonest actor loses

their staked collateral as a penalty. 
5. Finality: After the challenge period, if no fraud proof is submitted, the batch is considered final.

This means the transactions are accepted as valid, and the state updates are permanent.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a
hybrid consensus mechanism. Here’s a detailed explanation of how Polygon achieves consensus: 

Core Concepts:

1. Proof of Stake (PoS): 
- Validator Selection: Validators on the Polygon network are selected based on the number of

MATIC  tokens  they  have  staked.  The  more  tokens  staked,  the  higher  the  chance  of  being
selected to validate transactions and produce new blocks. 

- Delegation: Token holders who do not wish to run a validator node can delegate their MATIC
tokens to validators. Delegators share in the rewards earned by validators. 

2. Plasma Chains: 
- Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the

main Ethereum chain. These child chains can process transactions off-chain and submit only
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the final state to the Ethereum main chain, significantly increasing throughput and reducing
congestion. 

-  Fraud  Proofs:  Plasma  uses  a  fraud-proof  mechanism  to  ensure  the  security  of  off-chain
transactions. If a fraudulent transaction is detected, it can be challenged and reverted. 

Consensus Process:

1. Transaction Validation: 
Transactions are first validated by validators who have staked MATIC tokens.  These validators

confirm the validity of transactions and include them in blocks. 
2. Block Production: 

-  Proposing  and  Voting:  Validators  propose  new  blocks  based  on  their  staked  tokens  and
participate  in  a  voting  process  to  reach  consensus  on  the  next  block.  The  block  with  the
majority of votes is added to the blockchain. 

- Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain
are submitted to the Ethereum main chain. This process ensures the security and finality of
transactions on the Polygon network. 

3. Plasma Framework: 
-  Child  Chains:  Transactions  can  be  processed  on  child  chains  created  using  the  Plasma

framework. These transactions are validated off-chain and only the final state is submitted to
the Ethereum main chain. 

- Fraud Proofs: If  a fraudulent transaction occurs, it can be challenged within a certain period
using fraud proofs. This mechanism ensures the integrity of off-chain transactions. 

Security and Economic Incentives: 

1. Incentives for Validators: 
-  Staking Rewards:  Validators  earn rewards for  staking MATIC tokens and participating in  the

consensus process. These rewards are distributed in MATIC tokens and are proportional to the
amount staked and the performance of the validator. 

-  Transaction Fees:  Validators also earn a portion of  the transaction fees paid by users.  This
provides an additional financial incentive to maintain the network’s integrity and efficiency. 

2. Delegation: 
Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate

to. This encourages more token holders to participate in securing the network by choosing
reliable validators. 

3. Economic Security: 
Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This

penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that
validators act in the best interest of the network.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high
throughput, low latency, and robust security.

Core Concepts:

1. Proof of History (PoH): 
-  Time-Stamped Transactions:  PoH is a cryptographic technique that timestamps transactions,

creating a historical record that proves that an event has occurred at a specific moment in time.
- Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash

that includes the transaction and the time it was processed. This sequence of hashes provides
a  verifiable  order  of  events,  enabling  the  network  to  efficiently  agree  on  the  sequence  of
transactions. 
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2. Proof of Stake (PoS): 
- Validator Selection: Validators are chosen to produce new blocks based on the number of SOL

tokens they have staked. The more tokens staked, the higher the chance of being selected to
validate transactions and produce new blocks. 

-  Delegation:  Token  holders  can  delegate  their  SOL  tokens  to  validators,  earning  rewards
proportional to their stake while enhancing the network's security. 

Consensus Process: 

1. Transaction Validation: 
Transactions  are  broadcast  to  the  network  and  collected  by  validators.  Each  transaction  is

validated  to  ensure  it  meets  the  network’s  criteria,  such  as  having  correct  signatures  and
sufficient funds. 

2. PoH Sequence Generation: 
A validator generates a sequence of hashes using PoH, each containing a timestamp and the

previous  hash.  This  process  creates  a  historical  record  of  transactions,  establishing  a
cryptographic clock for the network. 

3. Block Production: 
The network uses PoS to select a leader validator based on their stake. The leader is responsible

for  bundling  the  validated  transactions  into  a  block.  The  leader  validator  uses  the  PoH
sequence to order transactions within the block, ensuring that all transactions are processed in
the correct order. 

4. Consensus and Finalization: 
Other validators verify the block produced by the leader validator. They check the correctness of

the PoH sequence and validate the transactions within the block. Once the block is verified, it is
added to the blockchain. Validators sign off on the block, and it is considered finalized. 

Security and Economic Incentives: 

1. Incentives for Validators: 
- Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are

distributed in SOL tokens and are proportional to the validator’s stake and performance. 
- Transaction Fees: Validators also earn transaction fees from the transactions included in the

blocks  they  produce.  These  fees  provide  an  additional  incentive  for  validators  to  process
transactions efficiently. 

2. Security: 
- Staking: Validators must stake SOL tokens to participate in the consensus process. This staking

acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or
fails to perform, they risk losing their staked tokens. 

-  Delegated  Staking:  Token  holders  can  delegate  their  SOL  tokens  to  validators,  enhancing
network security and decentralization. Delegators share in the rewards and are incentivized to
choose reliable validators. 

3. Economic Penalties: 
Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing

invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked
tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees 

ChainLink Token is present on the following networks: Arbitrum, Avalanche, Binance Smart Chain,
Ethereum, Fantom, Gnosis Chain, Optimism, Polygon, Solana.
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Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to
ensure the security and integrity of transactions on its network. The key mechanisms include: 

1. Validators and Sequencers: 
- Sequencers are responsible for ordering transactions and creating batches that are processed

off-chain. They play a critical role in maintaining the efficiency and throughput of the network. 
-  Validators  monitor  the  sequencers'  actions  and  ensure  that  transactions  are  processed

correctly.  Validators  verify  the state  transitions  and ensure that  no invalid  transactions  are
included in the batches. 

2. Fraud Proofs: 
- Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for

quick transaction finality and high throughput.
- Challenge Period: There is a predefined period during which anyone can challenge the validity of

a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious
behavior. 

-  Dispute Resolution:  If  a  challenge is  raised,  an interactive  verification process is  initiated to
pinpoint  the  exact  step  where  fraud  occurred.  If  the  challenge  is  valid,  the  fraudulent
transaction is reverted, and the dishonest actor is penalized. 

3. Economic Incentives: 
- Rewards for Honest Behavior: Participants in the network, such as validators and sequencers,

are incentivized through rewards for performing their  duties honestly  and efficiently.  These
rewards come from transaction fees and potentially other protocol incentives. 

-  Penalties  for  Malicious  Behavior:  Participants  who  engage  in  dishonest  behavior  or  submit
invalid transactions are penalized. This can include slashing of staked tokens or other forms of
economic penalties, which serve to discourage malicious actions. 

Fees on the Arbitrum One Blockchain 

1. Transaction Fees: 
- Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are

typically  lower than Ethereum mainnet fees due to the reduced computational  load on the
main chain. 

- Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer.
This fee covers the cost of processing the transaction and ensuring its inclusion in a batch. 

2. L1 Data Fees: 
- Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are

posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee,
which accounts for the gas required to publish these state updates on Ethereum. 

-  Cost Sharing:  Because transactions are batched, the fixed costs of posting state updates to
Ethereum are spread across multiple transactions, making it more cost-effective for users.

Avalanche  uses  a  consensus  mechanism  known  as  Avalanche  Consensus,  which  relies  on  a
combination of  validators,  staking,  and a novel  approach to consensus to ensure the network's
security and integrity. 

1. Validators: 

Staking: Validators on the Avalanche network are required to stake AVAX tokens. The amount staked
influences their probability of being selected to propose or validate new blocks. 

Rewards: Validators earn rewards for their participation in the consensus process. These rewards
are proportional to the amount of AVAX staked and their uptime and performance in validating
transactions. 
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Delegation: Validators can also accept delegations from other token holders. Delegators share in
the rewards based on the amount they delegate, which incentivizes smaller holders to participate
indirectly in securing the network. 

2. Economic Incentives: 

Block Rewards: Validators receive block rewards for proposing and validating blocks. These rewards
are distributed from the network’s inflationary issuance of AVAX tokens. 

Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This includes
fees for simple transactions, smart contract interactions, and the creation of new assets on the
network. 

3. Penalties: 

-  Slashing:  Unlike  some  other  PoS  systems,  Avalanche  does  not  employ  slashing  (i.e.,  the
confiscation of staked tokens) as a penalty for misbehavior.Instead, the network relies on the
financial disincentive of lost future rewards for validators who are not consistently online or act
maliciously. 

-  Uptime Requirements:  Validators  must  maintain  a  high  level  of  uptime and correctly  validate
transactions to continue earning rewards. Poor performance or malicious actions result in missed
rewards, providing a strong economic incentive to act honestly. 

Fees on the Avalanche Blockchain

1. Transaction Fees: 
- Dynamic Fees: Transaction fees on Avalanche are dynamic, varying based on network demand

and the complexity of the transactions. This ensures that fees remain fair and proportional to
the network's usage. 

-  Fee Burning:  A portion of  the transaction fees is  burned,  permanently removing them from
circulation. This deflationary mechanism helps to balance the inflation from block rewards and
incentivizes token holders by potentially increasing the value of AVAX over time. 

2. Smart Contract Fees: 
Execution Costs: Fees for deploying and interacting with smart contracts are determined by the

computational resources required. These fees ensure that the network remains efficient and
that resources are used responsibly. 

3. Asset Creation Fees: 
New Asset Creation: There are fees associated with creating new assets (tokens) on the Avalanche

network.  These  fees  help  to  prevent  spam and  ensure  that  only  serious  projects  use  the
network's resources.

Binance Smart Chain (BSC) uses the Proof of  Staked Authority (PoSA) consensus mechanism to
ensure network security and incentivize participation from validators and delegators. 

Incentive Mechanisms 

1. Validators: 
-  Staking  Rewards:  Validators  must  stake  a  significant  amount  of  BNB  to  participate  in  the

consensus process. They earn rewards in the form of transaction fees and block rewards. 
- Selection Process: Validators are selected based on the amount of BNB staked and the votes

received from delegators. The more BNB staked and votes received, the higher the chances of
being selected to validate transactions and produce new blocks. 

2. Delegators: 
- Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases

the validator's total stake and improves their chances of being selected to produce blocks. 
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-  Shared  Rewards:  Delegators  earn  a  portion  of  the  rewards  that  validators  receive.  This
incentivizes  token  holders  to  participate  in  the  network’s  security  and  decentralization  by
choosing reliable validators. 

3. Candidates: 
Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB

and are waiting to become active validators. They ensure that there is always a sufficient pool of
nodes ready to take on validation tasks, maintaining network resilience. 

4. Economic Security: 
- Slashing: Validators can be penalized for malicious behavior or failure to perform their duties.

Penalties include slashing a portion of their staked tokens, ensuring that validators act in the
best interest of the network. 

-  Opportunity  Cost:  Staking  requires  validators  and  delegators  to  lock  up  their  BNB  tokens,
providing an economic incentive to act honestly to avoid losing their staked assets. 

Fees on the Binance Smart Chain 

1. Transaction Fees: 
- Low Fees: BSC is known for its low transaction fees compared to other blockchain networks.

These  fees  are  paid  in  BNB  and  are  essential  for  maintaining  network  operations  and
compensating validators. 

-  Dynamic  Fee  Structure:  Transaction  fees  can  vary  based  on  network  congestion  and  the
complexity of the transactions. However, BSC ensures that fees remain significantly lower than
those on the Ethereum mainnet. 

2. Block Rewards: 
Incentivizing  Validators:  Validators  earn  block  rewards  in  addition  to  transaction  fees.  These

rewards are distributed to validators for their role in maintaining the network and processing
transactions. 

3. Cross-Chain Fees: 
Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred

between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal
fees, facilitating seamless asset transfers and improving user experience. 

4. Smart Contract Fees: 
Deploying  and  interacting  with  smart  contracts  on  BSC  involves  paying  fees  based  on  the

computational resources required. These fees are also paid in BNB and are designed to be
cost-effective, encouraging developers to build on the BSC platform.

The  crypto-asset's  PoS  system secures  transactions  through  validator  incentives  and  economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees. 

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity. 

This  system aims to increase security  by aligning incentives while  making the crypto-asset's  fee
structure more predictable and deflationary during high network activity.

Fantom’s incentive model promotes network security through staking rewards, transaction fees, and
delegation options, encouraging broad participation. 

Sustainability indicators according to MiCAR 66 (5) 21



Incentive Mechanisms: 

1. Staking Rewards for Validators: 
- Earning Rewards in FTM: Validators who participate in the consensus process earn rewards in

FTM tokens, proportional to the amount they have staked. This incentivizes validators to actively
secure the network. 

- Dynamic Staking Rate: Fantom’s staking reward rate is dynamic, adjusting based on total FTM
staked  across  the  network.  As  more  FTM  is  staked,  individual  rewards  may  decrease,
maintaining a balanced reward structure that supports long-term network security. 

2. Delegation for Token Holders: 
Delegated Staking: Users who do not operate validator nodes can delegate their FTM tokens to

validators.  In  return,  they  share  in  the  staking  rewards,  encouraging  wider  participation  in
securing the network. 

Applicable Fees: 

- Transaction Fees in FTM: Users pay transaction fees in FTM tokens. The network’s high throughput
and DAG structure keep fees low, making Fantom ideal for decentralized applications (dApps)
requiring frequent transactions.

- Efficient Fee Model: The low fees and scalability of the network make it cost-effective for users,
fostering a favorable environment for high-volume applications.

The Gnosis Chain’s incentive and fee models encourage both validator participation and network
accessibility,  using  a  dual-token  system to  maintain  low  transaction  costs  and  effective  staking
rewards. 

Incentive Mechanisms: 

- Staking Rewards for Validators GNO Rewards: Validators earn staking rewards in GNO tokens for
their participation in consensus and securing the network. 

-  Delegation Model:  GNO holders who do not operate validator nodes can delegate their  GNO
tokens  to  validators,  allowing  them  to  share  in  staking  rewards  and  encouraging  broader
participation in network security. 

- Dual-Token Model GNO: Used for staking, governance, and validator rewards, GNO aligns long-
term network security incentives with token holders’ economic interests. 

- xDai: Serves as the primary transaction currency, providing stable and low-cost transactions. The
use of a stable token (xDai) for fees minimizes volatility and offers predictable costs for users and
developers. 

Applicable Fees: 

Transaction Fees in xDai  Users pay transaction fees in xDai,  the stable fee token,  making costs
affordable and predictable. This model is especially suited for high-frequency applications and
dApps  where  low  transaction  fees  are  essential.  xDai  transaction  fees  are  redistributed  to
validators as part of their compensation, aligning their rewards with network activity. Delegated
Staking Rewards Through delegated staking, GNO holders can earn a share of staking rewards by
delegating  their  tokens  to  active  validators,  promoting  user  participation  in  network  security
without requiring direct involvement in consensus operations.

Optimism, an Ethereum Layer 2 scaling solution, uses Optimistic Rollups to increase transaction
throughput and reduce costs while maintaining security and decentralization. 
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Incentive Mechanisms: 

1. Sequencers: 
- Transaction Ordering: Sequencers are responsible for ordering and batching transactions off-

chain. They play a critical role in maintaining the efficiency and speed of the network. 
-  Economic  Incentives:  Sequencers  earn  transaction  fees  from  users.  These  fees  incentivize

sequencers to process transactions quickly and accurately. 
2. Validators and Fraud Proofs: 

- Assumption of Validity: In Optimistic Rollups, transactions are assumed to be valid by default.
This allows for quick transaction finality. 

-  Challenge  Mechanism:  Validators  (or  anyone)  can  challenge  the  validity  of  a  transaction  by
submitting a fraud proof during a specified challenge period.  This mechanism ensures that
invalid transactions are detected and reverted. 

- Challenge Rewards: Successful challengers are rewarded for identifying and proving fraudulent
transactions.  This  incentivizes  participants  to  actively  monitor  the  network  for  invalid
transactions, thereby enhancing security. 

3. Economic Penalties: 
-  Fraud  Proof  Penalties:  If  a  sequencer  includes  an  invalid  transaction  and  it  is  successfully

challenged, they face economic penalties, such as losing a portion of their staked collateral. This
discourages dishonest behavior. 

- Inactivity and Misbehavior: Validators and sequencers are also incentivized to remain active and
behave correctly, as inactivity or misbehavior can lead to penalties and loss of rewards. 

Fees Applicable on the Optimism Layer 2 Protocol:

1. Transaction Fees: 
- Layer 2 Transaction Fees: Users pay fees for transactions processed on the Layer 2 network.

These fees are generally lower than Ethereum mainnet fees due to the reduced computational
load on the main chain. 

-  Cost  Efficiency:  By batching multiple transactions into a single batch,  Optimism reduces the
overall cost per transaction, making it more economical for users. 

2. L1 Data Fees:
-  Posting  Batches to  Ethereum:  Periodically,  the state  updates  from Layer  2  transactions are

posted to the Ethereum mainnet as calldata. This involves a fee known as the L1 data fee, which
covers the gas cost of publishing these state updates on Ethereum. 

- Cost Sharing: The fixed costs of posting state updates to Ethereum are spread across multiple
transactions within a batch, reducing the cost burden on individual transactions. 

3. Smart Contract Fees: 
Execution Costs: Fees for deploying and interacting with smart contracts on Optimism are based

on the computational resources required. This ensures that users are charged proportionally
for the resources they consume.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network
security, incentivize participation, and maintain transaction integrity. 

Incentive Mechanisms: 

1. Validators: 
- Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are

selected to validate transactions and produce new blocks based on the number of tokens they
have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction
fees for their services. 
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-  Block  Production:  Validators  are  responsible  for  proposing  and  voting  on  new  blocks.  The
selected validator proposes a block, and other validators verify and validate it. Validators are
incentivized to act honestly and efficiently to earn rewards and avoid penalties. 

- Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring
the security and finality of transactions processed on Polygon. This provides an additional layer
of security by leveraging Ethereum's robustness. 

2. Delegators: 
- Delegation: Token holders who do not wish to run a validator node can delegate their MATIC

tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators,
incentivizing them to choose reliable and performant validators. 

-  Shared  Rewards:  Rewards  earned  by  validators  are  shared  with  delegators,  based  on  the
proportion  of  tokens  delegated.  This  system  encourages  widespread  participation  and
enhances the network's decentralization. 

3. Economic Security: 
-  Slashing:  Validators  can  be  penalized  through  a  process  called  slashing  if  they  engage  in

malicious behavior  or  fail  to  perform their  duties  correctly.  This  includes double-signing or
going offline for extended periods. Slashing results in the loss of a portion of the staked tokens,
acting as a strong deterrent against dishonest actions. 

- Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to
participate  in  the  consensus  process,  ensuring  they  have  a  vested  interest  in  maintaining
network security and integrity. Fees on the Polygon Blockchain 

4. Transaction Fees: 
-  Low  Fees:  One  of  Polygon's  main  advantages  is  its  low  transaction  fees  compared  to  the

Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to
encourage high transaction throughput and user adoption. 

-  Dynamic Fees:  Fees on Polygon can vary depending on network congestion and transaction
complexity. However, they remain significantly lower than those on Ethereum, making Polygon
an attractive option for users and developers. 

5. Smart Contract Fees: 
Deployment and Execution Costs:  Deploying and interacting with smart  contracts  on Polygon

incurs fees based on the computational resources required. These fees are also paid in MATIC
tokens and are much lower than on Ethereum, making it cost-effective for developers to build
and maintain decentralized applications (dApps) on Polygon. 

6. Plasma Framework: 
State  Transfers  and  Withdrawals:  The  Plasma  framework  allows  for  off-chain  processing  of

transactions, which are periodically batched and committed to the Ethereum main chain. Fees
associated with  these processes  are  also  paid  in  MATIC  tokens,  and they  help  reduce the
overall cost of using the network.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network
and validate transactions.

Incentive Mechanisms:

1. Validators: 
- Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked.

They earn rewards for producing and validating blocks, which are distributed in SOL. The more
tokens staked, the higher the chances of being selected to validate transactions and produce
new blocks. 

-  Transaction  Fees:  Validators  earn  a  portion  of  the  transaction  fees  paid  by  users  for  the
transactions  they  include  in  the  blocks.  This  provides  an  additional  financial  incentive  for
validators to process transactions efficiently and maintain the network's integrity. 
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2. Delegators: 
- Delegated Staking: Token holders who do not wish to run a validator node can delegate their

SOL tokens to a validator. In return, delegators share in the rewards earned by the validators.
This  encourages  widespread  participation  in  securing  the  network  and  ensures
decentralization. 

3. Economic Security: 
- Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or

being frequently offline. This penalty, known as slashing, involves the loss of a portion of their
staked tokens. Slashing deters dishonest actions and ensures that validators act in the best
interest of the network. 

- Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which
could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly
to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain 

Transaction Fees: 

1. Low and Predictable Fees: 
Solana is designed to handle a high throughput of transactions, which helps keep fees low and

predictable.  The average transaction fee on Solana is  significantly lower compared to other
blockchains like Ethereum. 

2. Fee Structure: 
Fees are paid in SOL and are used to compensate validators for the resources they expend to

process transactions. This includes computational power and network bandwidth. 
3. Rent Fees: 

State  Storage:  Solana  charges  rent  fees  for  storing  data  on  the  blockchain.  These  fees  are
designed to discourage inefficient use of state storage and encourage developers to clean up
unused state. Rent fees help maintain the efficiency and performance of the network. 

4. Smart Contract Fees: 
Execution  Costs:  Similar  to  transaction  fees,  fees  for  deploying  and  interacting  with  smart

contracts on Solana are based on the computational resources required. This ensures that
users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies 

The energy consumption of this asset is aggregated across multiple components:

To  determine  the  energy  consumption  of  a  token,  the  energy  consumption  of  the  network(s)
arbitrum,  avalanche,  binance_smart_chain,  ethereum,  fantom,  gnosis_chain,  optimism,  polygon,
solana  is  calculated  first.  For  the  energy  consumption  of  the  token,  a  fraction  of  the  energy
consumption of the network is attributed to the token, which is determined based on the activity of
the crypto-asset within the network.  When calculating the energy consumption,  the Functionally
Fungible  Group  Digital  Token  Identifier  (FFG  DTI)  is  used  -  if  available  -  to  determine  all
implementations of the asset in scope. The mappings are updated regularly, based on data of the
Digital Token Identifier Foundation. The information regarding the hardware used and the number
of  participants  in  the network is  based on assumptions that  are  verified with  best  effort  using
empirical  data.  In  general,  participants  are  assumed  to  be  largely  economically  rational.  As  a
precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making
higher estimates for the adverse impacts.

Uniswap
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Quantitative information 

Field Value Unit

S.1 Name Deutsche WertpapierService Bank
AG /

S.2 Relevant legal entity identifier 529900EXG2PM316ISO63 /

S.3 Name of the crypto-asset Uniswap /

S.6 Beginning of the period to which the disclosure
relates 2024-05-28 /

S.7 End of the period to which the disclosure relates 2025-05-28 /

S.8 Energy consumption 6734.93098 kWh/
a

Qualitative information 

S.4 Consensus Mechanism 

Uniswap is present on the following networks: Binance Smart Chain, Ethereum.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority
(PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA).
This method ensures fast block times and low fees while maintaining a level of decentralization and
security. 

Core Components:

1. Validators (so-called “Cabinet Members”): Validators on BSC are responsible for producing new
blocks, validating transactions, and maintaining the network’s security. To become a validator, an
entity must stake a significant amount of BNB (Binance Coin).  Validators are selected through
staking and voting by token holders. There are 21 active validators at any given time, rotating to
ensure decentralization and security. 

2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens
to validators. This delegation helps validators increase their stake and improves their chances of
being selected to produce blocks. Delegators earn a share of the rewards that validators receive,
incentivizing broad participation in network security. 

3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the
pool waiting to become validators. They are essentially potential validators who are not currently
active but can be elected to the validator set through community voting. Candidates play a crucial
role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus
maintaining network resilience and decentralization. Consensus Process 

4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received
from delegators.  The  more  BNB staked  and  votes  received,  the  higher  the  chance  of  being
selected to validate transactions and produce new blocks. The selection process involves both the
current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes. 

5.  Block  Production:  The selected validators  take  turns  producing  blocks  in  a  PoA-like  manner,
ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add
them to new blocks, and broadcast these blocks to the network. 

6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction
finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly
reach consensus. Security and Economic Incentives 

Sustainability indicators according to MiCAR 66 (5) 26



7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to
ensure their honest behavior. This staked amount can be slashed if  validators act maliciously.
Staking incentivizes validators to act in the network's best interest to avoid losing their staked
BNB. 

8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This
incentivizes them to choose reliable validators and participate in the network’s security. Validators
and  delegators  share  transaction  fees  as  rewards,  which  provides  continuous  economic
incentives to maintain network security and performance. 

9.  Transaction Fees:  BSC employs low transaction fees,  paid in BNB, making it  cost-effective for
users. These fees are collected by validators as part of their rewards, further incentivizing them to
validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity. 

The  network  operates  on  a  slot  and  epoch  system,  where  a  new block  is  proposed  every  12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees 

Uniswap is present on the following networks: Binance Smart Chain, Ethereum.

Binance Smart Chain (BSC) uses the Proof of  Staked Authority (PoSA) consensus mechanism to
ensure network security and incentivize participation from validators and delegators. 

Incentive Mechanisms 

1. Validators: 
-  Staking  Rewards:  Validators  must  stake  a  significant  amount  of  BNB  to  participate  in  the

consensus process. They earn rewards in the form of transaction fees and block rewards. 
- Selection Process: Validators are selected based on the amount of BNB staked and the votes

received from delegators. The more BNB staked and votes received, the higher the chances of
being selected to validate transactions and produce new blocks. 

2. Delegators: 
- Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases

the validator's total stake and improves their chances of being selected to produce blocks. 
-  Shared  Rewards:  Delegators  earn  a  portion  of  the  rewards  that  validators  receive.  This

incentivizes  token  holders  to  participate  in  the  network’s  security  and  decentralization  by
choosing reliable validators. 

3. Candidates: 
Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB

and are waiting to become active validators. They ensure that there is always a sufficient pool of
nodes ready to take on validation tasks, maintaining network resilience. 

4. Economic Security: 
- Slashing: Validators can be penalized for malicious behavior or failure to perform their duties.

Penalties include slashing a portion of their staked tokens, ensuring that validators act in the
best interest of the network. 
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-  Opportunity  Cost:  Staking  requires  validators  and  delegators  to  lock  up  their  BNB  tokens,
providing an economic incentive to act honestly to avoid losing their staked assets. 

Fees on the Binance Smart Chain 

1. Transaction Fees: 
- Low Fees: BSC is known for its low transaction fees compared to other blockchain networks.

These  fees  are  paid  in  BNB  and  are  essential  for  maintaining  network  operations  and
compensating validators. 

-  Dynamic  Fee  Structure:  Transaction  fees  can  vary  based  on  network  congestion  and  the
complexity of the transactions. However, BSC ensures that fees remain significantly lower than
those on the Ethereum mainnet. 

2. Block Rewards: 
Incentivizing  Validators:  Validators  earn  block  rewards  in  addition  to  transaction  fees.  These

rewards are distributed to validators for their role in maintaining the network and processing
transactions. 

3. Cross-Chain Fees: 
Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred

between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal
fees, facilitating seamless asset transfers and improving user experience. 

4. Smart Contract Fees: 
Deploying  and  interacting  with  smart  contracts  on  BSC  involves  paying  fees  based  on  the

computational resources required. These fees are also paid in BNB and are designed to be
cost-effective, encouraging developers to build on the BSC platform.

The  crypto-asset's  PoS  system secures  transactions  through  validator  incentives  and  economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees. 

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity. 

This  system aims to increase security  by aligning incentives while  making the crypto-asset's  fee
structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies 

The energy consumption of this asset is aggregated across multiple components:

To  determine  the  energy  consumption  of  a  token,  the  energy  consumption  of  the  network(s)
binance_smart_chain,  ethereum is  calculated  first.  For  the  energy  consumption  of  the  token,  a
fraction of the energy consumption of the network is attributed to the token, which is determined
based  on  the  activity  of  the  crypto-asset  within  the  network.  When  calculating  the  energy
consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available -
to determine all implementations of the asset in scope. The mappings are updated regularly, based
on data of the Digital Token Identifier Foundation. The information regarding the hardware used
and the number of participants in the network is based on assumptions that are verified with best
effort using empirical data. In general, participants are assumed to be largely economically rational.
As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e.
making higher estimates for the adverse impacts.
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Aave Token

Quantitative information 

Field Value Unit

S.1 Name Deutsche WertpapierService Bank
AG /

S.2 Relevant legal entity identifier 529900EXG2PM316ISO63 /

S.3 Name of the crypto-asset Aave Token /

S.6 Beginning of the period to which the disclosure
relates 2024-05-28 /

S.7 End of the period to which the disclosure relates 2025-05-28 /

S.8 Energy consumption 4499.40759 kWh/
a

Qualitative information 

S.4 Consensus Mechanism 

Aave  Token  is  present  on  the  following  networks:  Avalanche,  Binance  Smart  Chain,  Ethereum,
Gnosis Chain, Huobi, Near Protocol, Polygon, Solana.

The Avalanche blockchain network employs a unique Proof-of-Stake consensus mechanism called
Avalanche  Consensus,  which  involves  three  interconnected  protocols:  Snowball,  Snowflake,  and
Avalanche. 

Avalanche Consensus Process:

1. Snowball Protocol: 
-  Random Sampling:  Each validator randomly samples a small,  constant-sized subset of  other

validators. 
- Repeated Polling: Validators repeatedly poll the sampled validators to determine the preferred

transaction. 
-  Confidence  Counters:  Validators  maintain  confidence  counters  for  each  transaction,

incrementing them each time a sampled validator supports their preferred transaction. 
-  Decision  Threshold:  Once  the  confidence  counter  exceeds  a  pre-defined  threshold,  the

transaction is considered accepted. 
2. Snowflake Protocol: 

-  Binary Decision: Enhances the Snowball protocol by incorporating a binary decision process.
Validators decide between two conflicting transactions. 

- Binary Confidence: Confidence counters are used to track the preferred binary decision. 
- Finality: When a binary decision reaches a certain confidence level, it becomes final. 

3. Avalanche Protocol: 
- DAG Structure: Uses a Directed Acyclic Graph (DAG) structure to organize transactions, allowing

for parallel processing and higher throughput. 
-  Transaction  Ordering:  Transactions  are  added  to  the  DAG  based  on  their  dependencies,

ensuring a consistent order. 
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- Consensus on DAG: While most Proof-of-Stake Protocols use a Byzantine Fault Tolerant (BFT)
consensus,  Avalanche  uses  the  Avalanche  Consensus,  Validators  reach  consensus  on  the
structure and contents of the DAG through repeated Snowball and Snowflake.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority
(PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA).
This method ensures fast block times and low fees while maintaining a level of decentralization and
security. 

Core Components:

1. Validators (so-called “Cabinet Members”): Validators on BSC are responsible for producing new
blocks, validating transactions, and maintaining the network’s security. To become a validator, an
entity must stake a significant amount of BNB (Binance Coin).  Validators are selected through
staking and voting by token holders. There are 21 active validators at any given time, rotating to
ensure decentralization and security. 

2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens
to validators. This delegation helps validators increase their stake and improves their chances of
being selected to produce blocks. Delegators earn a share of the rewards that validators receive,
incentivizing broad participation in network security. 

3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the
pool waiting to become validators. They are essentially potential validators who are not currently
active but can be elected to the validator set through community voting. Candidates play a crucial
role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus
maintaining network resilience and decentralization. Consensus Process 

4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received
from delegators.  The  more  BNB staked  and  votes  received,  the  higher  the  chance  of  being
selected to validate transactions and produce new blocks. The selection process involves both the
current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes. 

5.  Block  Production:  The selected validators  take  turns  producing  blocks  in  a  PoA-like  manner,
ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add
them to new blocks, and broadcast these blocks to the network. 

6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction
finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly
reach consensus. Security and Economic Incentives 

7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to
ensure their honest behavior. This staked amount can be slashed if  validators act maliciously.
Staking incentivizes validators to act in the network's best interest to avoid losing their staked
BNB. 

8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This
incentivizes them to choose reliable validators and participate in the network’s security. Validators
and  delegators  share  transaction  fees  as  rewards,  which  provides  continuous  economic
incentives to maintain network security and performance. 

9.  Transaction Fees:  BSC employs low transaction fees,  paid in BNB, making it  cost-effective for
users. These fees are collected by validators as part of their rewards, further incentivizing them to
validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity. 
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The  network  operates  on  a  slot  and  epoch  system,  where  a  new block  is  proposed  every  12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Gnosis  Chain  –  Consensus Mechanism Gnosis  Chain  employs  a  dual-layer  structure to  balance
scalability and security, using Proof of Stake (PoS) for its core consensus and transaction finality.

Core Components: 

- Two-Layer Structure Layer 1: Gnosis Beacon Chain The Gnosis Beacon Chain operates on a Proof
of Stake (PoS) mechanism, acting as the security and consensus backbone. Validators stake GNO
tokens on the Beacon Chain and validate transactions, ensuring network security and finality. 

- Layer 2: Gnosis xDai Chain processes transactions and dApp interactions, providing high-speed,
low-cost transactions. Layer 2 transaction data is finalized on the Gnosis Beacon Chain, creating
an  integrated  framework  where  Layer  1  ensures  security  and  finality,  and  Layer  2  enhances
scalability. Validator Role and Staking Validators on the Gnosis Beacon Chain stake GNO tokens
and participate in consensus by validating blocks.  This  setup ensures that  validators have an
economic interest in maintaining the security and integrity of both the Beacon Chain (Layer 1) and
the xDai Chain (Layer 2). Cross-Layer Security Transactions on Layer 2 are ultimately finalized on
Layer 1, providing security and finality to all activities on the Gnosis Chain. This architecture allows
Gnosis Chain to combine the speed and cost efficiency of Layer 2 with the security guarantees of
a PoS-secured Layer 1, making it suitable for both high-frequency applications and secure asset
management.

The  Huobi  Eco  Chain  (HECO)  blockchain  employs  a  Hybrid-Proof-of-Stake  (HPoS)  consensus
mechanism,  combining  elements  of  Proof-of-Stake  (PoS)  to  enhance  transaction  efficiency  and
scalability. 

Key Features of HECO's Consensus Mechanism: 

1.  Validator Selection:  HECO supports up to 21 validators,  selected based on their  stake in the
network. 

2. Transaction Processing: Validators are responsible for processing transactions and adding blocks
to the blockchain. 

3.  Transaction  Finality:  The  consensus  mechanism  ensures  quick  finality,  allowing  for  rapid
confirmation of transactions. 

4.  Energy Efficiency: By utilizing PoS elements,  HECO reduces energy consumption compared to
traditional Proof-of-Work systems.

The NEAR Protocol uses a unique consensus mechanism combining Proof of Stake (PoS) and a
novel approach called Doomslug,  which enables high efficiency,  fast transaction processing,  and
secure finality in its operations.

Core Concepts:

1. Doomslug and Proof of Stake: 
-  NEAR's  consensus  mechanism primarily  revolves  around  PoS,  where  validators  stake  NEAR

tokens to participate in securing the network. However, NEAR's implementation is enhanced
with the Doomslug protocol. 
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- Doomslug allows the network to achieve fast block finality by requiring blocks to be confirmed in
two stages. Validators propose blocks in the first step, and finalization occurs when two-thirds
of validators approve the block, ensuring rapid transaction confirmation. 

2. Sharding with Nightshade: 
- NEAR uses a dynamic sharding technique called Nightshade. This method splits the network into

multiple  shards,  enabling  parallel  processing  of  transactions  across  the  network,  thus
significantly increasing throughput.  Each shard processes a portion of transactions,  and the
outcomes are merged into a single "snapshot" block. 

- This sharding approach ensures scalability, allowing the network to grow and handle increasing
demand efficiently. 

Consensus Process:

1. Validator Selection: 
- Validators are selected to propose and validate blocks based on the amount of NEAR tokens

staked. This selection process is designed to ensure that only validators with significant stakes
and community trust participate in securing the network. 

2. Transaction Finality: 
-  NEAR  achieves  transaction  finality  through  its  PoS-based  system,  where  validators  vote  on

blocks.  Once  two-thirds  of  validators  approve  a  block,  it  reaches  finality  under  Doomslug,
meaning that no forks can alter the confirmed state. 

3. Epochs and Rotation: 
- Validators are rotated in epochs to ensure fairness and decentralization. Epochs are intervals in

which validators  are reshuffled,  and new block proposers  are selected,  ensuring a  balance
between performance and decentralization.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a
hybrid consensus mechanism. Here’s a detailed explanation of how Polygon achieves consensus: 

Core Concepts:

1. Proof of Stake (PoS): 
- Validator Selection: Validators on the Polygon network are selected based on the number of

MATIC  tokens  they  have  staked.  The  more  tokens  staked,  the  higher  the  chance  of  being
selected to validate transactions and produce new blocks. 

- Delegation: Token holders who do not wish to run a validator node can delegate their MATIC
tokens to validators. Delegators share in the rewards earned by validators. 

2. Plasma Chains: 
- Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the

main Ethereum chain. These child chains can process transactions off-chain and submit only
the final state to the Ethereum main chain, significantly increasing throughput and reducing
congestion. 

-  Fraud  Proofs:  Plasma  uses  a  fraud-proof  mechanism  to  ensure  the  security  of  off-chain
transactions. If a fraudulent transaction is detected, it can be challenged and reverted. 

Consensus Process:

1. Transaction Validation: 
Transactions are first validated by validators who have staked MATIC tokens.  These validators

confirm the validity of transactions and include them in blocks. 
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2. Block Production: 
-  Proposing  and  Voting:  Validators  propose  new  blocks  based  on  their  staked  tokens  and

participate  in  a  voting  process  to  reach  consensus  on  the  next  block.  The  block  with  the
majority of votes is added to the blockchain. 

- Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain
are submitted to the Ethereum main chain. This process ensures the security and finality of
transactions on the Polygon network. 

3. Plasma Framework: 
-  Child  Chains:  Transactions  can  be  processed  on  child  chains  created  using  the  Plasma

framework. These transactions are validated off-chain and only the final state is submitted to
the Ethereum main chain. 

- Fraud Proofs: If  a fraudulent transaction occurs, it can be challenged within a certain period
using fraud proofs. This mechanism ensures the integrity of off-chain transactions. 

Security and Economic Incentives: 

1. Incentives for Validators: 
-  Staking Rewards:  Validators  earn rewards for  staking MATIC tokens and participating in  the

consensus process. These rewards are distributed in MATIC tokens and are proportional to the
amount staked and the performance of the validator. 

-  Transaction Fees:  Validators also earn a portion of  the transaction fees paid by users.  This
provides an additional financial incentive to maintain the network’s integrity and efficiency. 

2. Delegation: 
Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate

to. This encourages more token holders to participate in securing the network by choosing
reliable validators. 

3. Economic Security: 
Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This

penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that
validators act in the best interest of the network.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high
throughput, low latency, and robust security.

Core Concepts:

1. Proof of History (PoH): 
-  Time-Stamped Transactions:  PoH is a cryptographic technique that timestamps transactions,

creating a historical record that proves that an event has occurred at a specific moment in time.
- Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash

that includes the transaction and the time it was processed. This sequence of hashes provides
a  verifiable  order  of  events,  enabling  the  network  to  efficiently  agree  on  the  sequence  of
transactions. 

2. Proof of Stake (PoS): 
- Validator Selection: Validators are chosen to produce new blocks based on the number of SOL

tokens they have staked. The more tokens staked, the higher the chance of being selected to
validate transactions and produce new blocks. 

-  Delegation:  Token  holders  can  delegate  their  SOL  tokens  to  validators,  earning  rewards
proportional to their stake while enhancing the network's security. 
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Consensus Process: 

1. Transaction Validation: 
Transactions  are  broadcast  to  the  network  and  collected  by  validators.  Each  transaction  is

validated  to  ensure  it  meets  the  network’s  criteria,  such  as  having  correct  signatures  and
sufficient funds. 

2. PoH Sequence Generation: 
A validator generates a sequence of hashes using PoH, each containing a timestamp and the

previous  hash.  This  process  creates  a  historical  record  of  transactions,  establishing  a
cryptographic clock for the network. 

3. Block Production: 
The network uses PoS to select a leader validator based on their stake. The leader is responsible

for  bundling  the  validated  transactions  into  a  block.  The  leader  validator  uses  the  PoH
sequence to order transactions within the block, ensuring that all transactions are processed in
the correct order. 

4. Consensus and Finalization: 
Other validators verify the block produced by the leader validator. They check the correctness of

the PoH sequence and validate the transactions within the block. Once the block is verified, it is
added to the blockchain. Validators sign off on the block, and it is considered finalized. 

Security and Economic Incentives: 

1. Incentives for Validators: 
- Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are

distributed in SOL tokens and are proportional to the validator’s stake and performance. 
- Transaction Fees: Validators also earn transaction fees from the transactions included in the

blocks  they  produce.  These  fees  provide  an  additional  incentive  for  validators  to  process
transactions efficiently. 

2. Security: 
- Staking: Validators must stake SOL tokens to participate in the consensus process. This staking

acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or
fails to perform, they risk losing their staked tokens. 

-  Delegated  Staking:  Token  holders  can  delegate  their  SOL  tokens  to  validators,  enhancing
network security and decentralization. Delegators share in the rewards and are incentivized to
choose reliable validators. 

3. Economic Penalties: 
Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing

invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked
tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees 

Aave  Token  is  present  on  the  following  networks:  Avalanche,  Binance  Smart  Chain,  Ethereum,
Gnosis Chain, Huobi, Near Protocol, Polygon, Solana.

Avalanche  uses  a  consensus  mechanism  known  as  Avalanche  Consensus,  which  relies  on  a
combination of  validators,  staking,  and a novel  approach to consensus to ensure the network's
security and integrity. 

1. Validators: 

Staking: Validators on the Avalanche network are required to stake AVAX tokens. The amount staked
influences their probability of being selected to propose or validate new blocks. 
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Rewards: Validators earn rewards for their participation in the consensus process. These rewards
are proportional to the amount of AVAX staked and their uptime and performance in validating
transactions. 

Delegation: Validators can also accept delegations from other token holders. Delegators share in
the rewards based on the amount they delegate, which incentivizes smaller holders to participate
indirectly in securing the network. 

2. Economic Incentives: 

Block Rewards: Validators receive block rewards for proposing and validating blocks. These rewards
are distributed from the network’s inflationary issuance of AVAX tokens. 

Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This includes
fees for simple transactions, smart contract interactions, and the creation of new assets on the
network. 

3. Penalties: 

-  Slashing:  Unlike  some  other  PoS  systems,  Avalanche  does  not  employ  slashing  (i.e.,  the
confiscation of staked tokens) as a penalty for misbehavior.Instead, the network relies on the
financial disincentive of lost future rewards for validators who are not consistently online or act
maliciously. 

-  Uptime Requirements:  Validators  must  maintain  a  high  level  of  uptime and correctly  validate
transactions to continue earning rewards. Poor performance or malicious actions result in missed
rewards, providing a strong economic incentive to act honestly. 

Fees on the Avalanche Blockchain

1. Transaction Fees: 
- Dynamic Fees: Transaction fees on Avalanche are dynamic, varying based on network demand

and the complexity of the transactions. This ensures that fees remain fair and proportional to
the network's usage. 

-  Fee Burning:  A portion of  the transaction fees is  burned,  permanently removing them from
circulation. This deflationary mechanism helps to balance the inflation from block rewards and
incentivizes token holders by potentially increasing the value of AVAX over time. 

2. Smart Contract Fees: 
Execution Costs: Fees for deploying and interacting with smart contracts are determined by the

computational resources required. These fees ensure that the network remains efficient and
that resources are used responsibly. 

3. Asset Creation Fees: 
New Asset Creation: There are fees associated with creating new assets (tokens) on the Avalanche

network.  These  fees  help  to  prevent  spam and  ensure  that  only  serious  projects  use  the
network's resources.

Binance Smart Chain (BSC) uses the Proof of  Staked Authority (PoSA) consensus mechanism to
ensure network security and incentivize participation from validators and delegators. 

Incentive Mechanisms 

1. Validators: 
-  Staking  Rewards:  Validators  must  stake  a  significant  amount  of  BNB  to  participate  in  the

consensus process. They earn rewards in the form of transaction fees and block rewards. 
- Selection Process: Validators are selected based on the amount of BNB staked and the votes

received from delegators. The more BNB staked and votes received, the higher the chances of
being selected to validate transactions and produce new blocks. 
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2. Delegators: 
- Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases

the validator's total stake and improves their chances of being selected to produce blocks. 
-  Shared  Rewards:  Delegators  earn  a  portion  of  the  rewards  that  validators  receive.  This

incentivizes  token  holders  to  participate  in  the  network’s  security  and  decentralization  by
choosing reliable validators. 

3. Candidates: 
Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB

and are waiting to become active validators. They ensure that there is always a sufficient pool of
nodes ready to take on validation tasks, maintaining network resilience. 

4. Economic Security: 
- Slashing: Validators can be penalized for malicious behavior or failure to perform their duties.

Penalties include slashing a portion of their staked tokens, ensuring that validators act in the
best interest of the network. 

-  Opportunity  Cost:  Staking  requires  validators  and  delegators  to  lock  up  their  BNB  tokens,
providing an economic incentive to act honestly to avoid losing their staked assets. 

Fees on the Binance Smart Chain 

1. Transaction Fees: 
- Low Fees: BSC is known for its low transaction fees compared to other blockchain networks.

These  fees  are  paid  in  BNB  and  are  essential  for  maintaining  network  operations  and
compensating validators. 

-  Dynamic  Fee  Structure:  Transaction  fees  can  vary  based  on  network  congestion  and  the
complexity of the transactions. However, BSC ensures that fees remain significantly lower than
those on the Ethereum mainnet. 

2. Block Rewards: 
Incentivizing  Validators:  Validators  earn  block  rewards  in  addition  to  transaction  fees.  These

rewards are distributed to validators for their role in maintaining the network and processing
transactions. 

3. Cross-Chain Fees: 
Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred

between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal
fees, facilitating seamless asset transfers and improving user experience. 

4. Smart Contract Fees: 
Deploying  and  interacting  with  smart  contracts  on  BSC  involves  paying  fees  based  on  the

computational resources required. These fees are also paid in BNB and are designed to be
cost-effective, encouraging developers to build on the BSC platform.

The  crypto-asset's  PoS  system secures  transactions  through  validator  incentives  and  economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees. 

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity. 

This  system aims to increase security  by aligning incentives while  making the crypto-asset's  fee
structure more predictable and deflationary during high network activity.
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The Gnosis Chain’s incentive and fee models encourage both validator participation and network
accessibility,  using  a  dual-token  system to  maintain  low  transaction  costs  and  effective  staking
rewards. 

Incentive Mechanisms: 

- Staking Rewards for Validators GNO Rewards: Validators earn staking rewards in GNO tokens for
their participation in consensus and securing the network. 

-  Delegation Model:  GNO holders who do not operate validator nodes can delegate their  GNO
tokens  to  validators,  allowing  them  to  share  in  staking  rewards  and  encouraging  broader
participation in network security. 

- Dual-Token Model GNO: Used for staking, governance, and validator rewards, GNO aligns long-
term network security incentives with token holders’ economic interests. 

- xDai: Serves as the primary transaction currency, providing stable and low-cost transactions. The
use of a stable token (xDai) for fees minimizes volatility and offers predictable costs for users and
developers. 

Applicable Fees: 

Transaction Fees in xDai  Users pay transaction fees in xDai,  the stable fee token,  making costs
affordable and predictable. This model is especially suited for high-frequency applications and
dApps  where  low  transaction  fees  are  essential.  xDai  transaction  fees  are  redistributed  to
validators as part of their compensation, aligning their rewards with network activity. Delegated
Staking Rewards Through delegated staking, GNO holders can earn a share of staking rewards by
delegating  their  tokens  to  active  validators,  promoting  user  participation  in  network  security
without requiring direct involvement in consensus operations.

The  Huobi  Eco  Chain  (HECO)  blockchain  employs  a  Hybrid-Proof-of-Stake  (HPoS)  consensus
mechanism,  combining  elements  of  Proof-of-Stake  (PoS)  to  enhance  transaction  efficiency  and
scalability. 

Incentive Mechanism: 

1. Validator Rewards: 
Validators are selected based on their stake in the network. They process transactions and add

blocks to the blockchain. Validators receive rewards in the form of transaction fees for their role
in maintaining the blockchain's integrity. 

2. Staking Participation: 
Users  can  stake  Huobi  Token (HT)  to  become validators  or  delegate  their  tokens  to  existing

validators. Staking helps secure the network and, in return, participants receive a portion of the
transaction fees as rewards. 

Applicable Fees: 

1. Transaction Fees (Gas Fees): 
Users pay gas fees in HT tokens to execute transactions and interact with smart contracts on the

HECO network. These fees compensate validators for processing and validating transactions. 
2. Smart Contract Execution Fees: 

Deploying and interacting with smart contracts incur additional fees, which are also paid in HT
tokens. These fees cover the computational resources required to execute contract code.

NEAR  Protocol  employs  several  economic  mechanisms  to  secure  the  network  and  incentivize
participation.
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Incentive Mechanisms to Secure Transactions: 

1. Staking Rewards: 
Validators and delegators secure the network by staking NEAR tokens. Validators earn around 5%

annual inflation, with 90% of newly minted tokens distributed as staking rewards. Validators
propose blocks,  validate transactions,  and receive a share of these rewards based on their
staked tokens. Delegators earn rewards proportional to their delegation, encouraging broad
participation. 

2. Delegation: 
Token holders can delegate their NEAR tokens to validators to increase the validator's stake and

improve  the  chances  of  being  selected  to  validate  transactions.  Delegators  share  in  the
validator's  rewards based on their  delegated tokens,  incentivizing  users  to  support  reliable
validators. 

3. Slashing and Economic Penalties: 
Validators  face penalties  for  malicious behavior,  such as  failing  to  validate correctly  or  acting

dishonestly. The slashing mechanism enforces security by deducting a portion of their staked
tokens, ensuring validators follow the network's best interests. 

4. Epoch Rotation and Validator Selection: 
Validators are rotated regularly during epochs to ensure fairness and prevent centralization. Each

epoch reshuffles validators, allowing the protocol to balance decentralization with performance.

Fees on the NEAR Blockchain: 

1. Transaction Fees: 
Users pay fees in NEAR tokens for transaction processing, which are burned to reduce the total

circulating supply, introducing a potential deflationary effect over time. Validators also receive a
portion of transaction fees as additional rewards, providing an ongoing incentive for network
maintenance. 

2. Storage Fees: 
NEAR Protocol charges storage fees based on the amount of blockchain storage consumed by

accounts,  contracts,  and  data.  This  requires  users  to  hold  NEAR  tokens  as  a  deposit
proportional to their storage usage, ensuring the efficient use of network resources. 

3. Redistribution and Burning: 
A portion of the transaction fees (burned NEAR tokens) reduces the overall supply, while the rest

is  distributed  to  validators  as  compensation  for  their  work.  The  burning  mechanism helps
maintain long-term economic sustainability and potential value appreciation for NEAR holders. 

4. Reserve Requirement: 
Users must maintain a minimum account balance and reserves for data storage, encouraging

efficient use of resources and preventing spam attacks.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network
security, incentivize participation, and maintain transaction integrity. 

Incentive Mechanisms: 

1. Validators: 
- Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are

selected to validate transactions and produce new blocks based on the number of tokens they
have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction
fees for their services. 

-  Block  Production:  Validators  are  responsible  for  proposing  and  voting  on  new  blocks.  The
selected validator proposes a block, and other validators verify and validate it. Validators are
incentivized to act honestly and efficiently to earn rewards and avoid penalties. 
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- Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring
the security and finality of transactions processed on Polygon. This provides an additional layer
of security by leveraging Ethereum's robustness. 

2. Delegators: 
- Delegation: Token holders who do not wish to run a validator node can delegate their MATIC

tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators,
incentivizing them to choose reliable and performant validators. 

-  Shared  Rewards:  Rewards  earned  by  validators  are  shared  with  delegators,  based  on  the
proportion  of  tokens  delegated.  This  system  encourages  widespread  participation  and
enhances the network's decentralization. 

3. Economic Security: 
-  Slashing:  Validators  can  be  penalized  through  a  process  called  slashing  if  they  engage  in

malicious behavior  or  fail  to  perform their  duties  correctly.  This  includes double-signing or
going offline for extended periods. Slashing results in the loss of a portion of the staked tokens,
acting as a strong deterrent against dishonest actions. 

- Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to
participate  in  the  consensus  process,  ensuring  they  have  a  vested  interest  in  maintaining
network security and integrity. Fees on the Polygon Blockchain 

4. Transaction Fees: 
-  Low  Fees:  One  of  Polygon's  main  advantages  is  its  low  transaction  fees  compared  to  the

Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to
encourage high transaction throughput and user adoption. 

-  Dynamic Fees:  Fees on Polygon can vary depending on network congestion and transaction
complexity. However, they remain significantly lower than those on Ethereum, making Polygon
an attractive option for users and developers. 

5. Smart Contract Fees: 
Deployment and Execution Costs:  Deploying and interacting with smart  contracts  on Polygon

incurs fees based on the computational resources required. These fees are also paid in MATIC
tokens and are much lower than on Ethereum, making it cost-effective for developers to build
and maintain decentralized applications (dApps) on Polygon. 

6. Plasma Framework: 
State  Transfers  and  Withdrawals:  The  Plasma  framework  allows  for  off-chain  processing  of

transactions, which are periodically batched and committed to the Ethereum main chain. Fees
associated with  these processes  are  also  paid  in  MATIC  tokens,  and they  help  reduce the
overall cost of using the network.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network
and validate transactions.

Incentive Mechanisms:

1. Validators: 
- Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked.

They earn rewards for producing and validating blocks, which are distributed in SOL. The more
tokens staked, the higher the chances of being selected to validate transactions and produce
new blocks. 

-  Transaction  Fees:  Validators  earn  a  portion  of  the  transaction  fees  paid  by  users  for  the
transactions  they  include  in  the  blocks.  This  provides  an  additional  financial  incentive  for
validators to process transactions efficiently and maintain the network's integrity. 

2. Delegators: 
- Delegated Staking: Token holders who do not wish to run a validator node can delegate their

SOL tokens to a validator. In return, delegators share in the rewards earned by the validators.
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This  encourages  widespread  participation  in  securing  the  network  and  ensures
decentralization. 

3. Economic Security: 
- Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or

being frequently offline. This penalty, known as slashing, involves the loss of a portion of their
staked tokens. Slashing deters dishonest actions and ensures that validators act in the best
interest of the network. 

- Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which
could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly
to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain 

Transaction Fees: 

1. Low and Predictable Fees: 
Solana is designed to handle a high throughput of transactions, which helps keep fees low and

predictable.  The average transaction fee on Solana is  significantly lower compared to other
blockchains like Ethereum. 

2. Fee Structure: 
Fees are paid in SOL and are used to compensate validators for the resources they expend to

process transactions. This includes computational power and network bandwidth. 
3. Rent Fees: 

State  Storage:  Solana  charges  rent  fees  for  storing  data  on  the  blockchain.  These  fees  are
designed to discourage inefficient use of state storage and encourage developers to clean up
unused state. Rent fees help maintain the efficiency and performance of the network. 

4. Smart Contract Fees: 
Execution  Costs:  Similar  to  transaction  fees,  fees  for  deploying  and  interacting  with  smart

contracts on Solana are based on the computational resources required. This ensures that
users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies 

The energy consumption of this asset is aggregated across multiple components:

To  determine  the  energy  consumption  of  a  token,  the  energy  consumption  of  the  network(s)
avalanche, binance_smart_chain, ethereum, gnosis_chain, huobi, near_protocol, polygon, solana is
calculated first. For the energy consumption of the token, a fraction of the energy consumption of
the network is attributed to the token, which is determined based on the activity of the crypto-asset
within  the network.  When calculating  the energy  consumption,  the Functionally  Fungible  Group
Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset
in  scope.  The  mappings  are  updated  regularly,  based  on  data  of  the  Digital  Token  Identifier
Foundation. The information regarding the hardware used and the number of participants in the
network is based on assumptions that are verified with best effort using empirical data. In general,
participants are assumed to be largely economically rational. As a precautionary principle, we make
assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse
impacts.
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